
Lecture 12 (w13)

2025/2026

1

 Databases, Web Programming and Interfacing

▪ An VI IT4T

▪ 1C/1L/1P

 Timetable

▪ Friday, every week (fiecare saptamana) 1C + 2L (17-
20)

▪ Test + Project Presentation: last week (Weekend)

2

 10% - Test/Exam – last week – 1h
 40% - Project

▪ Personal(80%)/Team(20%)

 Previous database project

▪ receives a web user interface

▪ split in individual assignments

▪ bonus (individual) for supplemental embedded
systems access!

▪ admin/user – web user interface

▪ data supplier – embedded system (even partial)
3

 https://rf-opto.etti.tuiasi.ro/master_it.php

4

https://rf-opto.etti.tuiasi.ro/master_it.php
https://rf-opto.etti.tuiasi.ro/master_it.php
https://rf-opto.etti.tuiasi.ro/master_it.php
https://rf-opto.etti.tuiasi.ro/master_it.php

 access to online exams requires the password
received by email

 access email/password

6

 access email/password

7

 received by email

8

 The online exam app used for:

▪ lectures (attendance)

▪ laboratory

▪ project

▪ examinations

9

 always against a timetable

▪ long period (project submission/laboratory results)

▪ short period (tests: 15min, exam: 2h)

10

2025/2026

11

 Submission: On-site
 Presentation (in front of the colleagues) + files

submission
 3 files
▪ 1 *.pdf (print-screen while using the application, short

usage instructions, a mini-user manual for the
application) (personal)

▪ 1 *.sql (backup of the database required to run the
application) (team)

▪ archive of the application (inside: files *.php, *.jpg,
folder tree etc., archived: *.zip, *.7z etc.)
(team/personal)

12

 (2p) the application runs on the reference
server (can be downloaded from rf-opto:
Debian, php 8 or Ubuntu, php 7 or CentOS 7,
php 5): extract files from the *.zip archive in a
folder on the server, restore database from the
*.sql backup file

 (2p) the *. pdf file containing the user manual
exists and is appropriate for the submitted
application

 (2p) the application flowchart has been
submitted and contains appropriate data

 (4p) presentation on-site of the application

13

 on-line exam for the submission of the final individual work inside
the team (/individual) web application.

 Data:
▪ 1. Selfie, file, taken during the submission process (acting as a

signature for the submission)
▪ 2. Title of your (team) application/project, text
▪ 3. Team members, text
▪ 4. PDF file, file, includes a flowchart of your team application with

identification of individual assignment inside the team application,
and print-screen while using the application, short usage instructions,
a mini-user manual for the application (only for your individual
assignment)

▪ 4. SQL file, file, (*.sql), backup of the final database required to run
your submitted application

▪ 5. Archive file, file, one archive of the application (inside: files *.php,
*.jpg, folder tree etc., archived: *.zip, *.7z etc.)

14

 The files must be uploaded by all team
members, even if they are identical (access to
the common files is a minimal proof of team
membership).

 The "SQL file" and "Archive file" can (should) be
common, as is the case for the overall flowchart
of the team application.

 However, the identification of individual
assignment on the flowchart and the mini-user
manual (print-screen, usage instructions) must
be different between team members, without
overlaps.

15

Hypertext PreProcessor

16

17

 An array in PHP is actually an ordered map. A map
is a type that associates values to keys

 unlike C, Basic, keys are not required to be
integers, can be strings

 default keys (if not otherwise specified) are
consecutive integers with first key 0 (C syntax).

 defining a key / value pair
▪ key => value

 create an array
▪ $arr = array(“definition of key / value pairs”)
▪ pairs: key => value, key => value, …

18

 $arr = array(key1 => value1, key2 => value2,
key3 => value3)

19

$arr

value1

value2

value3
key3

key1

key2

 In particular, one or more of the values can in
turn be an array, leading to branching of the
tree

 $arr = array(key1 => val_1, key2 => array(key2a
=> val_a, key2b => val_b, key2c => val_c), key3
=> val_3)

20

$arr

val_1

-

val_a

val_b

val_cval_3
key3

key1

key2

key2c

key2a

key2b

matrice

fruits

a orange

b banana

c apple

numbers

0 1

1 2

2 3

... ...

holes

0 first

5 second

6=5+1 third 21



$matr= array (
"fruits" =>
array("a" => "orange", "b" => "banana", "c" => "apple" ,
"ultim"),
"numbers" =>
array(1, 2, 3, 4, 5, 6),
"holes" =>
array("first", 5 => "second", "third")
);
echo $matr;
echo "<pre>";
print_r ($matr);
echo "</pre>";

echo "<pre>";
print_r ($matr);
echo "</pre>";

22

 foreach (array_expression as $key => $value)
statement

 foreach (array_expression as $value) statement
 foreach construct is used to loop through each

key/value pair in an array
 On each iteration assign the current element's key to

the local variable $key and the value of the current
element is assigned to the local variable $value
(scope: statement)

 foreach() works with a copy of the array, you cannot
change the original array inside the statement
▪ foreach ($arr as $key => $value) {

$value = 'other value'; //doesn't work
$arr[$key] = 'other value'; //works
} 23

 $matr = array (
 "fruits" => array("a" => "orange", "b" => "banana", "c" => "apple", "ultim"),
 "numbers" => "in loc de numere",
 "holes" => "in loc de ce era"
);
foreach ($matr as $cheie => $continut)
 echo "matr[".$cheie."]=".$continut."
";

24

25

 PHP Global Variables - Superglobals (predefined
variables)
▪ are always accessible, regardless of scope
▪ Examples:

▪ $_SERVER — Server and execution environment information
▪ $_GET — HTTP GET variables
▪ $_POST — HTTP POST variables
▪ $_FILES — HTTP File Upload variables
▪ $_REQUEST — HTTP Request variables
▪ $_SESSION — Session variables
▪ $_ENV — Environment variables
▪ $_COOKIE — HTTP Cookies

26

 When a user submits the data by clicking on "Submit",
the form data is found in the file specified in the
action attribute of the <form> tag in one of the
superglobal variables:
▪ $_POST – method=“post”
▪ $_GET – method=“get”
▪ $_REQUEST – both methods

 the superglobal variables are arrays with string keys
controlled by the name attribute of the input element
▪ <input type="text" name="books_quant" size="3"

maxlength="3" />
▪ $_POST[‘books_quant’] contains the user input in the

receiving script

27

 name attributes in the form inputs become keys
in the superglobal array $_POST
▪ <input type="text" name="books_quant" size="3"

maxlength="3" />

▪ $_POST[‘books_quant’] contains the user input
 creating name "array like", we can control

branching of $_POST grouping input elements
in the form as required
▪ <input type="text“ name="quant[books]" size="3"

maxlength="3" />

▪ $_POST [‘quant’] [‘books’] contains the user input

28

 foreach($_POST as $value) { // do something
with $value } will loop over all submitted data,
including buttons, hidden fields

 for alternate contact data:
▪ <input name="adr1" type="text" value="" />
▪ <input name="adr2" type="text" value="" />
▪ <input name="tel1" type="text" value="" />
▪ <input name="tel2" type="text" value="" />
▪ <input name="email1" type="text" value="" />
▪ <input name="emal2" type="text" value="" />

 processing of different types difficult

29

 for alternate contact data:
▪ <input name="adr[1]" type="text" value="" />
▪ <input name="adr[2]" type="text" value="" />
▪ <input name="tel[1]" type="text" value="" />
▪ <input name="tel[2]" type="text" value="" />
▪ <input name="email[1]" type="text" value="" />
▪ <input name="emal[2]" type="text" value="" />

 process only selected data
▪ foreach($_POST["adr"] as $adr_i) { // do something with

$adr } will loop only over address data
▪ foreach($_POST["tel"] as $tel_i) { // do with $tel_i }
▪ foreach($_POST["email"] as $em_i) { // do with $em_i }

30

31

 PHP has two extensions in order to interact with
a MySql server (local or remote), these must be
activated in php.ini.
▪ mysql
▪ mysqli (improved: functions for MySql > 4.1)

 A database can be accessed if the PHP script
knows a MySql server user with access rights
▪ usually every application has its specific MySql user

with specific access rights
 A database can also be created from PHP, but it

is not the recommended method if it is not
necessary
▪ the code is difficult to implement and used only once

32

 mysql_connect
▪ Open a connection to a MySQL Server

▪ resource mysql_connect (string server , string user, string
password)

▪ returns a MySQL link identifier on success or false on
failure

 mysql_query
▪ Send a MySQL query

▪ resource mysql_query (string query [, resource
link_identifier])

▪ result
▪ SELECT, SHOW, DESCRIBE or EXPLAIN: returns a resource or false

▪ UPDATE, DELETE, DROP, etc: returns true/false
33

 mysql_fetch_assoc
▪ Returns an associative array that corresponds to the

fetched row and moves the internal data pointer
ahead, or false if there are no more rows. The string
keys of the array are the field names (columns) in the
DB table

▪ array mysql_fetch_assoc (resource result)
 mysql_fetch_row
▪ Returns an numerical array that corresponds to the

fetched row, or false

▪ array mysql_fetch_row (resource result)

34

 mysql_fetch_array
▪ groups functionality of mysql_fetch_assoc and

mysql_fetch_row
▪ array mysql_fetch_array (resource result [, int

result_type])
▪ MYSQL_ASSOC, MYSQL_NUM, MYSQL_BOTH

(default)
 mysql_data_seek
▪ moves the internal row pointer of the MySQL result

associated with the specified result identifier to point
to the specified row number. The next call to a MySQL
fetch function would return that row

▪ bool mysql_data_seek (resource result, int
row_number) 35

 Resources are a combination between

▪ Structured data (values + structure) resulted from
a SQL query

▪ functions to access those values/structure

 Analogy with OOP

▪ a special "class" created following a SQL query
with predefined procedures to access the results
of that query

36

37

internal data
pointer

Col 1
(data type)

Col 2
(data type)

...

.

1

2

...

internal data
pointer

Col 1 Col 2

1 Val 11 Val 12 ...

2 Val 21 Val 22 ...

...

Structure

Data

Functions to
access data

Functions to
access structure

Direct access

 Structure access functions are rarely used

▪ most applications are designed on a fixed DB
structure, and the structure of the received data is
known

▪ exception: general DB applications, eg: PhpMyAdmin

 Most data access functions are characterized by
sequential access

▪ the data is read line by line

▪ simultaneously, internal data pointer advances to the
next position, preparing the next read

38

 Functions are optimized for use in a do { }
while() loop or a while() { } loop
▪ Returns false if there are no more rows

 typically we fetch a single row
(mysql_fetch_assoc) followed by a do { }
while() loop
▪ to allow a "problem detection" code to run only

once

▪ or generate "single steps" for displaying a
successful result (eg: table head)

39

$hostname = "localhost";
$database = "world";
$username = "web";
$password = “ceva";
$conex= mysql_connect($hostname, $username, $password);
mysql_select_db($database, $ conex);

$query = "SELECT `Code`,`Name`,`Population` FROM `country` AS c ";
$result = mysql_query($ query, $ conex) or die(mysql_error());
$row_result = mysql_fetch_assoc($ result);
$totalRows_ result = mysql_num_rows($ result);

40

access
mysql_connect

mysql_select_db

Query 1
mysql_query

Result 1 =
RESOURCE

Row 1
mysql_fetch_assoc

query 2
mysql_query

Result 2 =
RESOURCE

Row 1
mysql_fetch_assoc

Row 2
mysql_fetch_assoc

Row 3
mysql_fetch_assoc

…

1

2

3

etc.

41

!! IMPORTANT

42

 Starting with PHP 5.5.0 the mysql extension
was deprecated

▪ any function from this extension generates an
E_DEPRECATED error/warning

▪ Starting with PHP 7.0.0 the mysql extension was
removed

 Instead we must use:

▪ mysqli extension (MySQL Improved)

▪ PDO extension (PHP Data Objects)

43

 Other than enhanced security offers access to
newer facilities of the DB server:

▪ Prepared Statements (speed, security)

▪ server side

▪ client side

▪ server Stored Procedures (speed, security)

▪ Multiple Statements

▪ Transactions (integrity)

44

 Supports two interfaces

▪ procedural interfaces (similar to mysql)

▪ OOP (similar to PDO)

 Procedural interface (almost) identical to the
original mysql extension

▪ easy transition

▪ small differences (parameter)

45

 all mysql functions have a mysqli equivalent
 most functions have the same parameters in the same

order
 there are functions with small differences (Ex:

mysqli_connect, mysqli_query)
46

<?php
$mysqli = mysqli_connect("example.com", "user", "password", "database");
$res = mysqli_query($mysqli, "SELECT 'Please do not use the mysql extension ' AS _msg FROM DUAL");
$row = mysqli_fetch_assoc($res);
echo $row['_msg'];

$mysql = mysql_connect("example.com", "user", "password");
mysql_select_db("test");
$res = mysql_query("SELECT ' for new developments.' AS _msg FROM DUAL", $mysql);
$row = mysql_fetch_assoc($res);
echo $row['_msg'];
?>

47

<?php
$var = new mysqli("example.com", "user", "password", "database");
$res = $var->query ($mysqli, "SELECT 'Please do not use the mysql extension ' AS _msg FROM DUAL");
$row = $res->fetch_assoc();
echo $row['_msg'];

$mysql = mysql_connect("example.com", "user", "password");
mysql_select_db("test");
$res = mysql_query("SELECT ' for new developments.' AS _msg FROM DUAL", $mysql);
$row = mysql_fetch_assoc($res);
echo $row['_msg'];
?>

48

internal data
pointer

Col 1
(data type)

Col 2
(data type)

...

.

1

2

...

internal data
pointer

Col 1 Col 2

1 Val 11 Val 12 ...

2 Val 21 Val 22 ...

...

Structure

Data

Functions to
access data

Functions to
access structure

Direct access

Constructor query fetch_assoc

Methods
Methods attached to
the resource

 example
$hostname = "localhost";
$database = "dbwpi";
$username = "web";
$password = “test";
$conex= mysql_connect($hostname, $username, $password);
mysql_select_db($database, $conex);

$query = "SELECT p.*, c.`nume` AS `nume_categ` FROM `produse` AS p
 LEFT JOIN `categorii` AS c ON (c.`id_categ` = p.`id_categ`)";
$result = mysql_query($query, $conex) or die(mysql_error());
$row_result = mysql_fetch_assoc($result);
$totalRows_result = mysql_num_rows($result);

do {
 $produse[$row_result['nume_categ']][$row_result['nume']]=array ("descr" => $row_result['detalii'], "pret"
=> $row_result['pret'], "cant" => $row_result['cant']);
 }
while ($row_result = mysql_fetch_assoc($result));

49

//$conex= mysql_connect($hostname, $username, $password);
//mysql_select_db($database, $conex);
$conex = mysqli_connect($hostname, $username, $password, $database);

$query = "SELECT p.*, c.`nume` AS `nume_categ` FROM `produse` AS p
 LEFT JOIN `categorii` AS c ON (c.`id_categ` = p.`id_categ`)";
//$result = mysql_query($query, $conex) or die(mysql_error());
$result = mysqli_query($conex, $query);

//$row_result = mysql_fetch_assoc($result);
$row_result = mysqli_fetch_assoc($result);

//$totalRows_result = mysql_num_rows($result);
$totalRows_result = mysqli_num_rows($result);

do {
 $produse[$row_result['nume_categ']][$row_result['nume']]=array ("descr" => $row_result['detalii'], "pret"
=> $row_result['pret'], "cant" => $row_result['cant']);
 }
//while ($row_result = mysql_fetch_assoc($result));
while ($row_result = mysqli_fetch_assoc($result));

50

//$conex= mysql_connect($hostname, $username, $password);
//mysql_select_db($database, $conex);
//$conex = mysqli_connect($hostname, $username, $password, $database);
$conex = new mysqli($hostname, $username, $password, $database);

$query = "SELECT p.*, c.`nume` AS `nume_categ` FROM `produse` AS p
 LEFT JOIN `categorii` AS c ON (c.`id_categ` = p.`id_categ`)";
//$result = mysql_query($query, $conex) or die(mysql_error());
//$result = mysqli_query($conex, $query);
$result = $conex->query($query);

//$row_result = mysql_fetch_assoc($result);
//$row_result = mysqli_fetch_assoc($result);
$row_result = $result->fetch_assoc();

//$totalRows_result = mysql_num_rows($result);
//$totalRows_result = mysqli_num_rows($result);
$totalRows_result = $result->num_rows;

do {
 $produse[$row_result['nume_categ']][$row_result['nume']]=array ("descr" => $row_result['detalii'], "pret"
=> $row_result['pret'], "cant" => $row_result['cant']);
 }
//while ($row_result = mysql_fetch_assoc($result));
while ($row_result = $result->fetch_assoc()); 51

 https://www.php.net/
 https://rf-opto.etti.tuiasi.ro/master_it.php

▪ 3 X PHP and MySQL Bible !!

52

https://www.php.net/
https://www.php.net/
https://rf-opto.etti.tuiasi.ro/master_it.php
https://rf-opto.etti.tuiasi.ro/master_it.php
https://rf-opto.etti.tuiasi.ro/master_it.php
https://rf-opto.etti.tuiasi.ro/master_it.php

53

 simultaneous control of the esthetic and
functional design for all pages in the site

 separation the application from the esthetic
design

54

55

<html>
<head>
<title>Magazin online Firma X
SRL</title>
</head>
<body bgcolor="#CCFFFF">
<table width="600" border="0"
align="center">
<tr><td><img
src="images/antet.gif"
width="600" height="100"
/></td></tr>
<tr><td height="600" valign="top"
bgcolor="#FFFFCC">
Continut
</td></tr>
</table>
</body>
</html>

 include()
 require()
 include_once()
 require_once()

 to insert the content of one PHP file (used as
parameter) into another PHP file (that uses the
include/require statement) before the server
executes it

 require stops the execution of the current script
if the parameter file is not found

 …_once() checks if the respective file has been
included before and does not include it again

56

 repeated sections
can be moved to a
separate file and
inserted with
require()

 first step:
common areas are
identified

<html>
<head>
<title>Magazin online Firma X SRL</title>
</head>
<body bgcolor="#CCFFFF">
<table width="600" border="0" align="center">
<tr><td><img src="images/antet.gif"
width="600" height="100" /></td></tr>
<tr><td height="600" valign="top"
bgcolor="#FFFFCC">
Continut
</td></tr>
</table>
</body>
</html>

57

<html>
<head>
<title>Magazin online Firma X
SRL</title>
</head>
<body bgcolor="#CCFFFF"><?php
//orice cod comun PHP
?><table width="600" border="0"
align="center">
<tr><td><img src="images/antet.gif"
width="600" height="100" /></td></tr>
<tr><td height="600" valign="top"
bgcolor="#FFFFCC">
<h1>Magazin online Firma X SRL</h1>

header.php

</td></tr>
</table>
</body>
</html>

footer.php

58

<html>
<head>
<title>Magazin online Firma X
SRL</title>
</head>
<body bgcolor="#CCFFFF">
<table width="600" border="0"
align="center">
<tr><td><img src="images/antet.gif"
width="600" height="100" /></td></tr>
<tr><td height="600" valign="top"
bgcolor="#FFFFCC">
Continut
</td></tr>
</table>
</body>
</html>

 header.php
▪ any common structure (HTML) code

▪ any common application code (PHP) – almost all
pages in an application need:
▪ data access

▪ check access rights

▪ constant definitions

▪ define/load data from session ($_SESSION)

 footer.php
▪ any common structure (HTML) code

▪ any common application code (PHP) – usually less:
▪ save data into the session ($_SESSION)

59

 Any php file in my application:

▪ <?php require('header.php');?>

▪ <?php require('footer.php');?>

 and automatically that file has the same
esthetic and functional design

<?php require('header.php');?>
<h2>Lista Produse</h2>
<table border="1">
…
</table>

<?php require('footer.php');?>
60

*.php

 speed of application development
 clear separation of the application from the

form
 unitary form

▪ “don’t make me think”

 simultaneous control of the esthetic and
functional design for all pages in the site

 defining common data in a single file

▪ define('BOOK_PRICE',100);

61

62

 post : data is transmitted as a block (inside
the body of the HTTP request)

 get : appends form-data into the URL :
results.php?prob=81&an=2009

 get must be used only for “idempotent” data,

▪ no collateral effects

▪ no change in server status (databases, etc)

 we can emulate a form (get) by writing links
appropriately

63

 used to send specific information to the target
file

 in file1.php
▪ <a href="file2.php?categ=<?php echo $cat;?>"> <?php

echo $cat;?>
 in file2.php
▪ $_GET['categ']="value $cat associated to that specific

link"

64

file1.php
CATEGORII PRODUSE

file2.php
PRODUSE, PRET,

COMANDA

rezultat.php
PRELUCRARE

COMANDA

$cat – $_GET

65

66

67

list_categ.php form.php

result.php

 As the application leaves a linear thread of
execution, it is necessary to introduce a
flowchart (tree) of the application

 Buyer

▪ reading the required data (database access) is
done in header.php, common for all files

list_categ.php
PRODUCT CATEGORIES

form.php
PRODUCTS, PRICE,

ORDER

result.php
PROCESS ORDER

68

 The appearance of the application for the seller

▪ introduces a parallel thread of execution with the
necessity of the initial choice: buyer/seller

▪ brings the possibility of writing in the database

▪ various writing operations

▪ insert new product category

▪ insert new product in an existing category

▪ modify existing product

▪ writing in the database involves 2 actions:

▪ collection of raw data from the user

▪ data processing
69

70

index.php
admin_categ.php

admin_list.php
admin_form.php

Select
B/S

index.php

Choose
category

list_categ.php

Insert
 order data

form.php

Process
order

result.php

Choose /
insert

category

admin_categ.php

Choose
product

admin_list.php

Modify / Insert
product

admin_form.php

B

S

MySqlheader.phpfooter.php
71

 The application flowchart must also include
information related to :

▪ what data is transmitted between the different
pages

▪ how data is transmitted between pages

72

$cat – $_GET $cant[produs] – $_POST

list_categ.php
PRODUCT CATEGORIES

form.php
PRODUCTS, PRICE,

ORDER

result.php
PROCESS ORDER

 Application flowchart – Example
▪ the list of categories will transmit a single variable to the next

file so we can use "active links", get method, $_GET in next file
▪ the order form transmits multiple data included in a form, so

the transmission is done with post method, $_POST in next file
 The choice of $_GET/$_POST has implications both in:
▪ the page that transmits the data
▪ as well as on the page that receives them

73

$cat – $_GET $cant[produs] – $_POST

list_categ.php
PRODUCT CATEGORIES

form.php
PRODUCTS, PRICE,

ORDER

result.php
PROCESS ORDER

74

post
get

list_categ.php form.php

result.php

post
get 75

index.php

admin_categ.php

admin_list.php

admin_form.php

Select
B/S

index.php

Choose
category

list_categ.php

Insert
 order data

form.php

Process
order

result.php

Choose /
insert

category

admin_categ.php

Choose
product

admin_list.php

Modify / Insert
product

admin_form.php

B

S

MySqlheader.phpfooter.php
76

post
get

Select
B/S

index.php

Choose
category

list_categ.php

Insert
 order data

form.php

Process
order

result.php

Choose /
insert

category

admin_categ.php

Choose
product

admin_list.php

Modify / Insert
product

admin_form.php

B

S

MySqlheader.phpfooter.php
77

post
get data?

Select
B/S

index.php

Choose
category

list_categ.php

Insert
 order data

form.php

Process
order

result.php

Choose /
insert

category

admin_categ.php

Choose
product

admin_list.php

Modify / Insert
product

admin_form.php

B

S

MySqlheader.phpfooter.php
78

post
get

79

Select
B/S

index.php

Choose
category

list_categ.php

Insert
 order data

form.php

Process
order

result.php

Choose /
insert

category

admin_categ.php

Choose
product

admin_list.php

Modify / Insert
product

admin_form.php

B

S

MySqlheader.phpfooter.php
80

post
get

post
get 81

 This option is often preferred
 It allows the unitary preservation of all

operations for the performance of an action

▪ easier access

▪ ease of programming

▪ avoiding errors: File does not exist: /Server/…

 The same file is initially used to collect data
and then, if their presence is detected, for
their processing

82

 The "action" file for <form> will be the current file
 it is recommended to use the global variable

$_SERVER['SCRIPT_NAME']
▪ flexibility when renaming files

 alternatively $_SERVER['PHP_SELF'] is not
recommended
▪ security issues

 The data collection section is displayed only in the
absence of data

<form action="<?php echo $_SERVER['SCRIPT_NAME '];?>" method="post">
<p><input name=“date_ok" type="submit" value="Trimite" /></p>
</form>

83

 The detection of the existence of the data is done by
checking the existence (isset($variable)) of the user
inserted values

▪ for extra protection, their content can also be checked

if (isset($_POST[" date_ok "]))
 { //date trimise
 if ($_POST[" date_ok "]=="Trimite")
 { // data sent by the current file
 // data processing
 }
 }
else
 {
 // data collection
<form action="<?php echo $_SERVER['SCRIPT_NAME '];?>" method="post">
<p><input name=“date_ok" type="submit" value="Trimite" /></p></form>
 }

84

85



$matr= array (
"fruits" =>
array("a" => "orange", "b" => "banana", "c" => "apple" ,
"ultim"),
"numbers" =>
array(1, 2, 3, 4, 5, 6),
"holes" =>
array("first", 5 => "second", "third")
);
echo $matr;
echo "<pre>";
print_r ($matr);
echo "</pre>";

echo "<pre>";
print_r ($matr);
echo "</pre>";

86

 It is recommended to use the array
visualization option
▪ In the file that receives the data

▪ temporarily until the final version of the
code

 the use of "verbose" code (manual) in
the initial stages of writing PHP code
can be extended to other types of data
▪ the only (almost) debugging method in

PHP

▪ <p>temp <?php echo "a=";echo $a; ?> </p>
87

echo "<pre>";
print_r ($_POST);
echo "</pre>";

88

echo "<pre>";
print_r ($_POST);
echo "</pre>";

<p>temp res <?php echo
"a=";echo $a; ?> </p>

echo "<pre>".print_r ($_GET,true)."</pre>";

89

 If you do not have easy access to the "logs" of
the MySql server, you can see how the queries
actually reach it by temporarily displaying the
query text
▪ $query = "SELECT * FROM `produse` AS p WHERE

`id_categ` = ".$row_result_c['id_categ'];
 echo $query; // useful during testing
▪ The text processed by PHP of the query will be clearly

displayed on the page, making it easier to debug the program

▪ These lines must be removed in the final form of the program
as a security measure

90

 Checking the error "log" of the
Apache server and of the PHP
interpreter is one of the main
method of debugging PHP code.

▪ Centos 7.1:

▪ putty → nano /var/log/httpd/error_log

▪ http://192.168.30.5/logfile.php
(nonstandard)

▪ supplemental homework (php.ini + log
PHP recommended)

91

 During the finalization of the MySql queries, it is
often beneficial to first use MySql Workbench /
PhpMyAdmin to test the queries, and then,
when you are satisfied with the result, transfer
the SQL query to the PHP code

92

93

 the efficiency of a web application
▪ 100% - all processing "moved" to RDBMS

▪ PHP only to move and display data
 efficiency of a MySql application
▪ 25% correct choice of data types

▪ 25% creating the necessary indexes in the
applications

▪ 25% correct normalization of the database

▪ 20% increase in query complexity to "move"
processing to the database server

▪ 5% correct writing of queries
94

 When implementing a new application (project)
1. Imagining the application flowchart (ex: S77)
▪ "how would I like to work with such an application"

▪ paper/pencil/time - essential

2. Data identification/data transmission between
pages

▪ get/post/single file collection-processing

▪ read/write database

3. Identification of the logical structure of the data
▪ "classes" of objects/phenomena treated identically

▪ scalability is taken into account (the possibility of increasing
the number of elements in a class)

95

 When implementing a new application (project)
4. Implementation of the database structure

▪ In general, a table for each distinct logical class BUT...

▪ scalability is taken into account (if the application grows the
number of classes/tables WILL NOT increase) AND...

▪ normalization

5. Identifying the data type required for the columns
▪ preferably use integers in any situation that requires ordering

▪ the size of the fields not larger than necessary (it can be forced by
the "size" attribute in the HTML "input" tag)

6. Imagining the form of the pages
▪ "I've seen it like this before and I liked it" (Don't make me think!)

▪ investigating the possibility of introducing template functionality

96

 When implementing a new application (project)
7. Populate (manual) the database with initial data

▪ MySql Query Browser (or PhpMyAdmin) / automatic / imported

▪ the individual programming of some pages needs the preexistence
of some data

8. Individual programming of pages
▪ Generally, in the order from the application flowchart (often a page

provides the necessary data for the next one in the plan)

▪ "verbose" mode active for PHP (ie: echo $a; print_r($matr))

9. Preparation for distribution / move on production server
▪ detailed testing (possibly a "guinea pig")

▪ elimination of "verbose" additions

▪ backup

▪ generating an eventual install/setup
97

 Permite transmiterea unor header-e specifice
protocolului HTTP

 Structura mesajului
▪ <initial line, different for request vs. response>
▪ Header1: value1
▪ Header2: value2
▪ Header3: value3
▪
▪ <optional message body goes here, like file contents

or query data; it can be many lines long, or even
binary data $&*%@!^$@>

 header(string, code)

 Header-ele HTTP se trimit inaintea oricaror
alte date (HTML)

▪ Inceput fisier: <?php header("..."); ?><!DOCTYPE
HTML PUBLIC ...
<html>...<body>...</body></html>

▪ Nici macar un spatiu nu trebuie sa apara inainte
de primul <?php

▪ Daca necesitatea de a trimite header-e poate
aparea mai tarziu in script se foloseste obligatoriu
Buffer iesire

 Copie orice iesire a scriptului PHP intr-un buffer
de memorie fara sa transmita nimic clientului

 Utilizat in general pentru conlucrarea cu header-
e HTTP, evitarea generarii de HTML inainte de
terminarea lucrului cu header-e

 ob_start();
 ob_end_flush ();
 ob_end_clean ();

 ob_get_contents ()

 mici cantitati de date ce se stocheaza pe
masina client (de obicei gestionat de
browser)

 Circula impreuna cu (este) header HTTP
 setcookie (string name , string value , int

expire , string path , string domain , bool
secure , bool httponly)

▪ nume (ptr. identificare)

▪ value (valoarea/datele stocate)



 setcookie(string $name, string $value , int
$expire = 0)
▪ expire: UNIX time stamp, nr. sec. din 1970
▪ time()+nr. sec. de viata dorite

 datele se stocheaza pe client: probleme de
securitate

 Se poate obtine valoarea memorata prin
variabila globala $_COOKIE['nume']
▪ NU in acelasi script
▪ daca un script php trimite un cookie cu header-ele,

de-abia urmatorul script accesat va primi acele cookie
in header-e



109



110

 cookie poate oferi "memorie" aplicatiilor web
 dezavantaje
▪ datele se stocheaza la client, nu sunt in siguranta

▪ nu se pot stoca oricate date (max. 20)

▪ e posibil clientul sa nu accepte cookie
 Sesiunea pentru evitarea acestor dezavantaje
▪ stocare pe server

▪ oricat de mult date

▪ daca clientul nu accepta cookie, "memoria" se
realizeaza prin metoda "get"

 session_start(); (session_ID din GET, POST,
COOKIE)

 session_write_close ();
 session_id ([string id]);
 datele se manipuleaza prin variabila globala

$_SESSION care ofera acces la
citirea/scrierea datelor



113

114







118

Web Server

Apache

PHP
Interpreter

• HTML
• Images
• Documents

PHP
files

HTTP request

HTTP reply

MariaDB
Server

Linux
CentOS 7.1

119

FTP Server

SSH Server

Microsoft
Windows

FTP/SFTP Client
WinScp

SSH Client
Putty

Browser

Editor
Notepad ++

Email
Server

phpMyAdmin

 differences from a Windows computer

▪ system commands difficult

▪ command prompt, SSH, Putty

▪ files submitted by FTP

▪ Copy/Paste unavailable

▪ administration of MySql server:

▪ using PhpMyAdmin (preloaded)

▪ using other software on the host computer (eg. MySQL
Workbench)

120

 Advantages
▪ Available applications have newer versions (2020 ~)

▪ CentOS/7.1, Apache/2.4.6, PHP/5.4.16, MariaDB/5.5.44,
PhpMyAdmin/4.4.15

▪ Ubuntu/20.04, Apache/ 2.4.41, PHP/ 7.4.3, MariaDB/ 10.3.31,
PhpMyAdmin/4.9.5

▪ Debian/12.5, Apache/ 2.4.57, PHP/ 8.2.7, MariaDB/ 10.11.6,
PhpMyAdmin/5.2.1

▪ Available applications very similar with real life hosting
solutions
▪ SSH
▪ FTP
▪ Email

▪ for full functionality the network interface for the VM must be changed
Host-only -> Bridged

121

 rf-opto.etti.tuiasi.ro > Master > Web Design

122

 Cloud ETTI: RF-opto3#

123

 Masina virtuala
 VMware Workstation Player

▪ Gratuit (non-comercial)

▪ https://www.vmware.com/products/workstation-
player/workstation-player-evaluation.html

 Inlocuit de VMware Workstation Pro
(Broadcom)

124

https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html

 Masina virtuala
 VMware Workstation Pro (Broadcom)

125

126

 Current VMWare Player runs only on 64bit operating
systems Windows/Linux
▪ for 32bit operating systems previous (certified originals)

can be made available on rf-opto
 The host computer must enable Hardware

Virtualization
▪ Hardware Virtualization is enabled in BIOS, depending on

the PC manufacturer: Processor, Chipset, Northbridge

▪ Options name: VT-x, AMD-V, Vanderpool, Hyper-V, SVM,
Intel Virtualization Technology. if available: Intel VT-d, AMD
IOMMU

 VM archive requires 7zip native to the target operating
system

127

128

1. login → root:masterrc / paw:masteretti
2. ifconfig → 192.168.30.5
3. putty.exe → 192.168.30.5 → SSH →
root:masterrc (remote login)
4. [other linux command line]
5. FTP → Winscp → SFTP →
student:masterrc@192.168.30.5
6. MySql → http://192.168.30.5/phpmyadmin
→ root:masterrc / root:masteretti
7. Apache Error Log →
7a. putty → nano /var/log/httpd/error_log
7b. http://192.168.30.5/logfile.php
(nonstandard)
8. PHP info → http://192.168.30.5/info.php
9. if DHCP service stops Apache functionality:
service httpd restart

Web Server

Apache

PHP
Interpreter

• HTML
• Images
• Documents

PHP
files

MariaDB
Server

Linux
CentOS 7.1

128

FTP Server

SSH Server

Email
Server

phpMyAdmin

 Linux, two variants
▪ Centos 7.1

▪ PHP 5.4.16
▪ MariaDB 5.5.44
▪ Apache 2.4.6
▪ root/student:masterrc

▪ Ubuntu 20.04 (recommended)
▪ PHP 7.4.3
▪ MariaDB 10.3.31
▪ Apache 2.4.41
▪ paw/student:masteretti
▪ correction paw FTP access:

▪ sudo usermod -a -G upload paw
▪ sudo chmod -R 775 /var/www

129

 Linux, three proposed servers

▪ CentOS 7.1

▪ Ubuntu 20.04

▪ Debian 12.5

130

 Centos 7.1

▪ PHP 5.4.16

▪ MariaDB 5.5.44 / root:masterrc

▪ Apache 2.4.6

▪ PhpMyAdmin/4.4.15

▪ root/student:masterrc

▪ Python 2.7.5

▪ creat: Workstation Player 12.x (12)

131

 Ubuntu 20.04
▪ PHP 7.4.3

▪ MariaDB 10.3.31 / root:masteretti

▪ Apache 2.4.41

▪ paw/student:masteretti

▪ necesar suplimentar pentru acces FTP user paw:
▪ sudo usermod -a -G upload paw

▪ sudo chmod -R 775 /var/www

▪ Python 3.8.10

▪ creat: Workstation Player 15.x (16)
132

 Debian 12.5

▪ PHP 8.2.7

▪ MariaDB 10.11.6 / root:masteretti

▪ Apache 2.4.57

▪ PhpMyAdmin/5.2.1 deb

▪ root/paw/student:masteretti

▪ Python 3.11.2

▪ creat: Workstation Player 17.5 (21)

133

 Pentru rularea unui server pe o versiune
VMware Player anterioara:

▪ se localizeaza fisierul “*.vmx” a server-ului

▪ se modifica virtualHW.version = “21” la o valoare
mai mica (anterioara)

▪ in 2.13 -> 18

134

135

 WinSCP (client FTP, gratuit)
▪ https://winscp.net/eng/download.php

 Notepad ++ (editor, avansat, gratuit)
▪ https://notepad-plus-plus.org/downloads/

 Putty (remote access)
▪ https://www.putty.org/

 MySQL Workbench (gratuit, cont Oracle)
▪ https://www.mysql.com/products/workbench/

 Visual Studio Code (gratuit, Microsoft)
▪ https://code.visualstudio.com/download

136

https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://www.putty.org/
https://www.putty.org/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://code.visualstudio.com/download
https://code.visualstudio.com/download

 Variante portabile

137

 login, ifconfig
 Ctrl + Alt + mouse

138

 putty.exe
 avoids mouse capture (CentOS), copy/paste etc.

139

 FTP client
 upload files

140

 1.87 Portable

141

 Installed extensions

▪ PHP Intelephense

▪ PHP 8 -> Debian

▪ PHP Debug (inactive
for now)

▪ SFTP – automatic
save on server

142

143

144

145

146

MySql

147

 Baza de date – instrument pentru stocarea si
manipularea informatiei eficient si efectiv
▪ datele sunt protejate de corupere sau pierderi

accidentale

▪ nu se utilizeaza mai multe resurse decat minimul
necesar

▪ datele pot fi accesate cu performanta acceptabila
 Baze de date relationale
▪ model relational (matematic eficient) – Codd

~1970

148

 DBMS – database management system
aplicatii incluse in baza de date pentru
accesul la informatii

 RDBMS – Relational DBMS. Majoritatea
sistemelor de baze de date tind la aceasta
titulatura

▪ ~300 de reguli trebuie respectate

▪ nici un sistem actual nu implementeaza total
aceste reguli

149

 Toate sistemele de baze de date sunt
caracterizate de:
▪ toate informatiile sunt reprezentate intr-o aranjare

ordonata bidimensionala numita relatie
▪ toate valorile (atribute) stocate sunt scalare (in orice

celula din tabel se stocheaza o singura valoare)
▪ toate operatiile se aplica asupra unei intregi relatii si

rezulta o intreaga relatie
 Terminologii (MySql)
▪ tabel – table / recordset / result set
▪ linie – record / row
▪ coloana – field / column

150

 toate informatiile sunt reprezentate intr-o
aranjare bidimensionala numita relatie

▪ aranjarile bidimensionale nu sunt ordonate implicit

▪ datele trebuie stocate pentru a implementa o relatie
in asa fel incat fiecare linie sa fie unica

 cheie candidata

▪ exista cel putin o combinatie de atribute (coloane)
care pot identifica in mod unic o linie

▪ aceste combinatii de atribute se numesc chei
candidate

151

 Din toate combinatiile de coloane care pot fi utilizate
pentru identificarea unica a unei linii se alege macar una
utilizata intern de RDBMS pentru ordonarea datelor –
cheie primara
▪ Celelelte chei candidate devin chei alternative si pot fi folosite

pentru eficientizarea prelucrarilor (crearea de “index” dupa
aceste chei)

 In cazul in care nu exista o combinatie de coloane
utilizabila ca si cheie cu utilitate practica se introduce
artificial o cheie, cu numere intregi incrementate automat
de DBMS (autoincrement)
▪ de multe ori este recomandata o astfel de actiune, numerele

intregi fiind mult mai usor de controlat, ordonat, cautat decat
alte tipuri de date

▪ cheile de tip autoincrement nu e nevoie sa contina informatie

152

 Normalizarea asigura:

▪ stocarea eficienta a datelor

▪ prelucrarea eficienta a datelor

▪ integritatea datelor

 Trei nivele de normalizare
 Eliminarea datelor redundante

153

154

155

 toate valorile sunt scalare

 nu toate rezolvarile sunt eficiente

156

 O relatie este in a doua forma normala cand
este in prima forma normala si suplimentar
atributele (valorile de pe coloana) depind de
intreaga cheie candidata aleasa

157

158

 O relatie este in a treia forma normala cand
este in a doua forma normala si suplimentar
atributele (valorile de pe coloana) care nu fac
parte din cheie sunt mutual independente

159

160

 Se tine cont si de eliminarea datelor redundante.
Anumite redundante pot fi eliminate prin
introducerea de relatii suplimentare

 Forma normala Boyce/Codd cere sa nu existe
dependenta functionala intre cheile candidate

161

162

MySql

163

 Legaturile intre tabele pot fi

▪ One to One

▪ One to Many

▪ Many to Many

▪ Unare (auto referinta)

164

 Fiecare tabel poate avea corespondenta o
singura linie (row) sau nici una de cealalta parte
a relatiei

 echivalent cu o relatie “bijectiva”
 analogie cu casatorie:
▪ o persoana poate fi casatorita sau nu

▪ daca este casatorita va fi casatorita cu o singura
persoana din tabelul cu persoane de sex opus

▪ persoana respectiva va fi caracterizata de aceeasi
relatie “one to one” – primeste simultan un singur
corespondent in tabelul initial

165

 de multe ori legaturile “one to one” se
bazeaza pe reguli externe

 de obicei se poate realiza usor si eficient
gruparea ambelor tabele in unul singur

166

 O linie dintr-un tabel (row), identificata prin
cheia primara, poate avea: nici una, una sau
mai multe linii corespondente in celalalt
tabel. In acesta o linie poate fi legata cu o
singura linie din tabelul primar.

 Analogie cu relatii parinte/copil:

▪ fiecare om are o singura mama

▪ fiecare femeie poate avea nici unul, unul sau mai
multi copii

167

 de obicei aceste legaturi se implementeaza
prin introducerea cheii primare din tabelul
One in calitate de coloana in tabelul Many
(cheie externa – foreign key)

168

 Fiecare linie (row) din ambele tabele
implicate in legatura poate fi legat cu oricate
(niciuna, una sau mai multe) linii din tabelul
corespondent.

 Analogie cu relatii de rudenie (veri de
exemplu), tabel 1 – barbati, tabel 2 – femei :
▪ fiecare barbat poate fi ruda cu una sau mai multe

femei

▪ la randul ei fiecare femeie poate fi ruda cu unul
sau mai multi barbati

169

 de obicei aceste legaturi se implementeaza
prin introducerea unui tabel suplimentar
(numit tabel asociat sau de legatura) care sa
memoreze legaturile

170

 Un caz particular de legatura “one to many” in
care legatura e in interiorul aceluiasi tabel

 rezolvarea este similara, introducerea unei
coloane suplimentara, cu referinta la cheia
primara din tabel

 analogie cu relatii parinte copil cand ambele
persoane se regasesc in acelasi tabel

171

 Respectarea formelor normale ale bazelor de
date aduce nenumarate avantaje

 Efectul secundar este dat de necesitatea
separarii datelor intre mai multe tabele

 In exemplul utilizat avem doua concepte
diferite din punct de vedere logic

▪ produs

▪ categorie de produs

172

 In exemplul utilizat avem doua concepte
diferite din punct de vedere logic

▪ produs

▪ categorie de produs

 Cele doua tabele nu sunt independente
 Intre ele exista o legatura data de

functionalitatea dorita pentru aplicatie: un
produs va apartine unei anumite categorii
de produse

173

 Legaturile implementata

▪ One to Many

▪ in tabelul “produse” apare cheia externa (foreign
key): “id_categ”

174

 Daca se doreste o situatie cand un produs
poate apartine mai multor categorii (o carte
cu CD poate fi inclusa si in “papetarie” si in
“audio-video”)

▪ relatia devine de tipul Many to Many

▪ e necesara introducerea unui tabel de legatura cu
coloanele “id_leg” (cheie primara), “id_categorie”
si “id_produs” (chei externe)

175

176

 Nu trebuie evitate relatiile

▪ Many to Many

▪ One to Many

 Prelucrarea cade in sarcina server-ului de
baze de date (RDBMS)

▪ JOIN – esential in aplicatii cu baze de date

177

 eficienta unei aplicatii web

▪ 100% - toate prelucrarile "mutate" in RDBMS

▪ PHP doar afisarea datelor

 eficienta unei aplicatii MySql

▪ 25% alegerea corecta a tipurilor de date

▪ 25% crearea indecsilor necesari in aplicatii

▪ 25% normalizarea corecta a bazei de date

▪ 20% cresterea complexitatii interogarilor pentru a
“muta” prelucrarile pe server-ul de baze de date

▪ 5% scrierea corecta a interogarilor
178

MySql

179

 numeric
▪ intregi

▪ BIT (implicit 1 bit)

▪ TINYINT (implicit 8 biti)

▪ SMALLINT (implicit 16 biti)

▪ INTEGER (implicit 32biti)

▪ BIGINT (implicit 64biti)

▪ real
▪ FLOAT

▪ DOUBLE

▪ DECIMAL – fixed point

180

 data/timp

▪ DATE ('YYYY-MM-DD')

▪ '1000-01-01' pana la '9999-12-31'

▪ DATETIME ('YYYY-MM-DD HH:MM:SS')

▪ '1000-01-01 00:00:00' pana la '9999-12-31 23:59:59'

▪ TIMESTAMP ('YYYY-MM-DD HH:MM:SS')

▪ '1970-01-01 00:00:00' pana la partial 2037

181

 sir
▪ CHAR (M)

▪ sir de lungime constanta M, M<255

▪ VARCHAR (M)
▪ sir de lungime variabila, maxim M, M<255 (M<65535)

 cantitati mari de date
▪ TEXT

▪ au alocat un set de caractere, operatiile tin cont de acesta

▪ BLOB
▪ sir de octeti, operatiile tin cont de valoarea numerica

▪ TINYBLOB/TINYTEXT, BLOB/TEXT,
MEDIUMBLOB/MEDIUMTEXT, LARGEBLOB/LARGETEXT
▪ date 28-1, 216-1, 224-1, 232-1 = 4GB

182

 enumerare

▪ ENUM('val1','val2',...)

▪ una singura din cele maxim 65535 valori distincte
posibile

▪ SET('val1','val2',...)

▪ niciuna sau mai multe din cele maxim 64 valori distincte

▪ echivalent cu “setare de biti” intr-un intreg pe 64 biti cu
tabela asociata

183

184

 Metoda de stocare a datelor nu e o caracteristica
a server-ului ci a fiecarui tabel in parte

 Exemplu ulterior CREATE: “ENGINE = InnoDB”
 MySql suporta diferite metode de stocare,

fiecare cu avantajele/dezavantajele sale
 Implicit se foloseste metoda MyISAM, dar la

instalarea server-ului (laborator 1) o anumita
selectie poate schimba valoarea implicita in
InnoDB

 Alegerea metodei de stocare potrivita are
implicatii majore asupra performantei
aplicatiei 185

 MyISAM
 InnoDB
 Memory
 Merge
 Archive
 Federated
 NDBCLUSTER
 CSV
 Blackhole
 Example

186

 MyISAM
▪ metoda de stocare implicita in MySql

▪ performanta ridicata (resurse ocupate si viteza)

▪ posibilitatea cautarii in intregul text (index FULLTEXT)

▪ blocare acces la nivel de tabel

▪ nu accepta tranzactii

▪ nu accepta FOREIGN KEY
▪ probleme relative la integritatea datelor

 InnoDB
 Memory

187

 MyISAM
 InnoDB
▪ devine metoda de stocare implicita in MySql daca la

instalare se alege model tranzactional
▪ performanta medie (resurse ocupate si viteza)
▪ blocare acces la nivel de linie
▪ nu accepta index FULLTEXT

▪ incepand cu MySql 5.6.4 este introdus index FULLTEXT

▪ accepta tranzactii
▪ accepta FOREIGN KEY

▪ probleme mai putine la integritatea datelor prin constrangeri
intre tabele

 Memory
188

 MyISAM
 InnoDB
 Memory
▪ metoda de stocare recomandata pentru tabele temporare
▪ performanta maxima (viteza – datele sunt stocate in RAM)

▪ la oprirea server-ului datele se pierd, tabelul este pastrat dar va fi
fara nici o linie

▪ nu accepta tipuri de date mari (BLOB, TEXT) – maxim 255
octeti

▪ nu accepta index FULLTEXT
▪ nu accepta tranzactii
▪ nu accepta FOREIGN KEY

▪ probleme relative la integritatea datelor

189

190

 Referinta la elementele unei baze de date se
face prin utilizarea numelui elementului
respectiv daca nu exista dubii (referinta relativa)

▪ daca baza de date este selectata se poate utiliza
numele tabelului pentru a identifica un tabel

▪ USE db_name;
SELECT * FROM tbl_name;

▪ daca tabelul este identificat in instructiune se poate
utiliza numele coloanei pentru a identifica coloana
implicata

▪ SELECT col_name FROM tbl_name;
191

 In cazul in care apare ambiguitate in
identificarea unui element se poate indica
descendenta sa pâna la disparitia ambiguitatii

 Astfel, o anumita coloana, col_name, care
apartine tabelului tbl_name din baza de date
(schema) db_name poate fi identificata in
functie de necesitati ca:
▪ col_name

▪ tbl_name.col_name

▪ db_name.tbl_name.col_name

192

 Numele de identificatori pot avea o lungime de
reprezentare de maxim 64 octeti cu exceptia
Alias care poate avea o lungime de 255 octeti

 Nu sunt permise:

▪ caracterul NULL (ASCII 0x00) sau 255 (0xFF)

▪ caracterul “/”

▪ caracterul “\”

▪ caracterul “.”

 Numele nu se pot termina cu caracterul spatiu

193

 Numele de baze de date nu pot contine decat
caractere permise in numele de directoare

 Numele de tabele nu pot contine decat caractere
permise in numele de fisiere

 Anumite caractere utilizate vor impune necesitatea
trecerii intre apostroafe a numelui

 Apostroful utilizat pentru nume de identificatori e
apostroful invers (backtick) “`”
▪ pentru a nu aparea confuzie cu variabilele sir
▪ nu necesita aparitia apostrofului caracterele alfanumerice

normale, “_”, “$”
 numele rezervate trebuie de asemenea cuprinse intre

apostroafe pentru a fi utilizate

194

 Orice identificator poate primi un nume asociat
– Alias

▪ pentru a elimina ambiguitati

▪ pentru a usura scrierea

▪ pentru a modifica numele coloanelor in rezultate

 Definirea unui alias se face in interiorul unei
interogari SQL si are efect in aceeasi interogare

▪ SELECT `t`.* FROM `tbl_name` AS t;

▪ SELECT `t`.* FROM `tbl_name` t;

195

 Desi utilizarea cuvantului cheie AS nu este
obligatorie, obisnuinta utilizarii lui este
recomandata, pentru a evita/identifica alocari
eronate

▪ SELECT id, nume FROM produse;  doua
coloane

▪ SELECT id nume FROM produse;  Alias “nume”
creat pentru coloana “id”

196

 Usurinta scrierii
▪ SELECT * FROM un_tabel_cu_nume_lung AS t

WHERE t.col1 = 5 AND t.col2 = ‘ceva’
 Modificarea numelui de coloana, sau crearea

unui nume pentru o coloana calculata in
rezultate
▪ SELECT CONCAT(nume," ",prenume) AS

nume_intreg FROM studenti AS s;

▪ SELECT `n1` AS `Nume`, `n2` AS `Nota`, `n3` AS
`Numar matricol` FROM elevi AS e;

197

 Eliminarea ambiguitatilor
▪ intalnita frecvent la relatii “many to many”

▪ SELECT p.*, c.`nume` AS `nume_categ` FROM
`produse` AS p
LEFT JOIN `categorii` AS c ON (c.`id_categ` =
p.`id_categ`)";

▪ tabelele c si p contin ambele coloanele “nume” si
“id_categ”
▪ modificarea denumirii coloanei “nume” din categorii pentru

evitarea confuziei cu coloana “nume” din produse

▪ eventual se pot da nume diferite coloanelor “id_categ” pentru
a evita ambiguitatea in interiorul clauzei ON (desi si referinta
absoluta rezolva aceasta problema)

198

199

 Interogarile SQL pot fi
▪ Pentru definirea datelor, crearea programatica de baze

de date, tabele, coloane etc.
▪ mai putin utilizate in majoritatea aplicatiilor
▪ ALTER, CREATE, DROP, RENAME

▪ Pentru manipularea datelor
▪ SELECT, INSERT, UPDATE, REPLACE etc.

▪ Pentru control/administrare tranzactii/server
 De cele mai multe ori aplicatiile doar manipuleaza

datele. Structura este definita in avans de asemenea si
administrarea este mai facila cu programe
specializate

 Urmatoarele definitii sunt cele valabile pentru MySql
5.0

200

 ALTER {DATABASE | SCHEMA} [db_name]
alter_specification ...

▪ alter_specification:

▪ [DEFAULT] CHARACTER SET [=] charset_name

▪ [DEFAULT] COLLATE [=] collation_name

 Modifica caracteristicile generale ale unei
baze de date

 E necesar dreptul de acces (privilegiu) ALTER
aspra respectivei baze de date

201

 ALTER TABLE {table_option [, table_option] ... |
partitioning_specification}
▪ table_option:

▪ ADD [COLUMN] col_name column_definition [FIRST | AFTER col_name]

▪ ADD {INDEX|KEY} [index_name] [index_type] (index_col_name,...) [index_option] ...

▪ ADD [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...) [index_option]
...

▪ CHANGE [COLUMN] old_col_name new_col_name column_definition [FIRST|AFTER col_name]

▪ MODIFY [COLUMN] col_name column_definition [FIRST | AFTER col_name]

▪ DROP [COLUMN] col_name

▪ DROP PRIMARY KEY

▪ DROP {INDEX|KEY} index_name

▪ DISABLE KEYS

▪ ENABLE KEYS

▪ RENAME [TO] new_tbl_name

 permite modificarea unui tabel existent

202

 CREATE {DATABASE | SCHEMA} [IF NOT
EXISTS] db_name [create_specification...]
▪ create_specification:

▪ [DEFAULT] CHARACTER SET charset_name

▪ [DEFAULT] COLLATE collation_name

 Crearea unei noi baze de date
 Necesara la instalarea unei aplicatii
 Fisierele SQL “backup” contin succesiunea

DROP…, CREATE… pentru a inlocui datele in
intregime

203

 CREATE [UNIQUE|FULLTEXT|SPATIAL]
INDEX index_name [USING index_type] ON
tbl_name (index_col_name,...)

▪ index_col_name:

▪ col_name [(length)] [ASC | DESC]

 Crearea unui index se face de obicei la crearea
tabelului

 Interogarea CREATE INDEX … se transpune in
interogare ALTER TABLE …

204

 CREATE [TEMPORARY] TABLE [IF NOT
EXISTS] tbl_name [(create_definition,...)]
[table_options] [select_statement]

 CREATE [TEMPORARY] TABLE [IF NOT
EXISTS] tbl_name [(] LIKE old_tbl_name [)]

 Interogarea de creare a tabelului este
memorata intern de server-ul MySql pentru
utilizari ulterioare (in general in ALTER TABLE
sa fie cunoscute specificatiile initiale)

205

 create_definition – coloana impreuna cu eventualele caracteristici
(in special chei - indecsi):
▪ column_definition

▪ | [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
▪ | KEY [index_name] [index_type] (index_col_name,...)
▪ | INDEX [index_name] [index_type] (index_col_name,...)
▪ | [CONSTRAINT [symbol]] UNIQUE [INDEX] [index_name] [index_type]

(index_col_name,...)
▪ | [FULLTEXT|SPATIAL] [INDEX] [index_name] (index_col_name,...)
▪ | [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (index_col_name,...)

[reference_definition]
▪ | CHECK (expr)

 column_definition – nume si tipul de date (curs 8):
▪ col_name type [NOT NULL | NULL] [DEFAULT default_value]

[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY] [COMMENT
'string'] [reference_definition]

206

 Exemple
▪ CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT, PRIMARY

KEY (a), KEY(b)) SELECT b,c FROM test2;
▪ CREATE TABLE IF NOT EXISTS `schema`.`Employee` (

`idEmployee` VARCHAR(45) NOT NULL ,
`Name` VARCHAR(255) NULL ,
`idAddresses` VARCHAR(45) NULL ,
PRIMARY KEY (`idEmployee`) ,
CONSTRAINT `fkEmployee_Addresses`
FOREIGN KEY `fkEmployee_Addresses` (`idAddresses`)
REFERENCES `schema`.`Addresses` (`idAddresses`)
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = utf8
COLLATE = utf8_bin

207

 CREATE … LIKE … creaza un tabel fara date pe
baza modelului unui tabel existent. Se pastreaza
definitiile coloanelor si eventualele chei (index)
definite in tabelul anterior

 CREATE … SELECT … creaza un tabel cu date pe
baza modelului si datelor obtinute dintr-un alt
tabel existent. Sunt obtinute anumite coloane
(SELECT) cu tipul lor, dar fara crearea indecsilor

 CREATE TEMPORARY TABLE creaza un tabel
temporar. Utilizat in cazul interogarilor
complexe sau cu numar mare de rezultate

208

 DROP {DATABASE | SCHEMA} [IF EXISTS]
db_name

 DROP INDEX index_name ON tbl_name
 DROP [TEMPORARY] TABLE [IF EXISTS]

tbl_name [, tbl_name] …
 Trebuie utilizate cu foarte mare atentie aceste

interogari, stergerea datelor este ireversibila
 Fisierele SQL “backup” contin succesiunea

DROP…, CREATE… pentru a inlocui datele in
intregime

209

210

 Interogarile SQL pot fi
▪ Pentru definirea datelor, crearea programatica de baze de

date, tabele, coloane etc.
▪ mai putin utilizate in majoritatea aplicatiilor
▪ ALTER, CREATE, DROP, RENAME

▪ Pentru manipularea datelor
▪ SELECT, INSERT, UPDATE, REPLACE, DELETE etc.

▪ Pentru control/administrare tranzactii/server
 De cele mai multe ori aplicatiile doar manipuleaza

datele. Structura este definita in avans de asemenea si
administrarea este mai facila cu programe
specializate

 Urmatoarele definitii sunt cele valabile pentru MySql
5.0

211

 DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM table_name [WHERE where_condition]
[ORDER BY ...] [LIMIT row_count]

 Sterge linii din tabelul mentionat si returneaza
numarul de linii sterse

 [LOW_PRIORITY] [QUICK] [IGNORE] sunt
optiuni care instruiesc server-ul sa reactioneze
diferit de varianta standard

 Exemplu:
▪ DELETE FROM somelog WHERE user = 'jcole’

ORDER BY timestamp_column LIMIT 1;

212

 [WHERE where_condition] – folosit pentru a
selecta liniile care trebuie sterse
▪ In absenta conditiei se sterg toate liniile din tabel

 [LIMIT row_count] sterge numai row_count linii
dupa care se opreste
▪ In general pentru a limita ocuparea server-ului

(recrearea indecsilor se face “on the fly”)

▪ Operatia se poate repeta pana valoarea returnata e
mai mica decat row_count

 [ORDER BY ...] precizeaza ordinea in care se
sterg liniile identificate prin conditie

213

 INSERT [LOW_PRIORITY | DELAYED |
HIGH_PRIORITY] [IGNORE] [INTO] tbl_name
[(col_name,...)] VALUES ({expr | DEFAULT},...)
,(...),… [ON DUPLICATE KEY UPDATE
col_name=expr, ...]

 INSERT [LOW_PRIORITY | DELAYED |
HIGH_PRIORITY] [IGNORE] [INTO] tbl_name
SET col_name={expr | DEFAULT}, …[ON
DUPLICATE KEY UPDATE col_name=expr, ...]

 INSERT [LOW_PRIORITY | HIGH_PRIORITY]
[IGNORE] [INTO] tbl_name [(col_name,...)]
SELECT … [ON DUPLICATE KEY UPDATE
col_name=expr, ...]

214

 Introduce linii noi intr-un tabel
 Primele doua forme introduc valori exprimate

explicit
▪ INSERT … VALUES …
▪ INSERT … SET …

 INSERT … SELECT … introduce valori rezultate
obtinute printr-o interogare SQL

 DELAYED – interogarea primeste raspuns de la
server imediat, dar inserarea datelor se face
efectiv cand tabelul implicat nu este folosit
▪ valabil pentru metodele de stocare MyISAM, Memory,

Archive

215

 Exemple

▪ INSERT INTO tbl_name (a,b,c) VALUES (1,2,3),
(4,5,6), (7,8,9);

▪ INSERT INTO tbl_name (col1,col2) VALUES
(15,col1*2);

▪ INSERT INTO table1 (field1,field3,field9) SELECT
field3,field1,field4 FROM table2;

216

 INSERT … ON DUPLICATE KEY UPDATE …
 Daca inserarea unei noi linii ar conduce la

duplicarea unei chei primare sau unice, in loc sa
se introduca o noua linie se modifica linia
anterioara

 Exemple

▪ INSERT INTO table (a,b,c) VALUES (1,2,3) ON
DUPLICATE KEY UPDATE c=c+1;

▪ INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6) ON
DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

217

 REPLACE [LOW_PRIORITY | DELAYED] [INTO]
tbl_name [(col_name,...)] VALUES ({expr |
DEFAULT},...),(...),...

 REPLACE [LOW_PRIORITY | DELAYED] [INTO]
tbl_name SET col_name={expr | DEFAULT}, ...

 REPLACE [LOW_PRIORITY | DELAYED] [INTO]
tbl_name [(col_name,...)] SELECT ...

 REPLACE functioneaza similar cu INSERT
▪ daca noua linie nu realizeaza duplicarea unei chei primare

sau unice se realizeaza insertie
▪ daca noua linie realizeaza duplicarea unei chei primare sau

unice se sterge linia anterioara dupa care se insereaza
noua linie

 REPLACE e extensie MySql a limbajului SQL standard
218

 UPDATE [LOW_PRIORITY] [IGNORE]
tbl_name SET col_name1=expr1 [,
col_name2=expr2 ...] [WHERE
where_condition] [ORDER BY ...] [LIMIT
row_count]

 Modificarea valorilor stocate intr-o linie
 Exemple

▪ UPDATE persondata SET age=15 WHERE id=6;

▪ UPDATE persondata SET age=age+1;

219

 SELECT [ALL | DISTINCT | DISTINCTROW]
[HIGH_PRIORITY] [STRAIGHT_JOIN]
select_expr, … [FROM table_references
▪ [WHERE where_condition]
▪ [GROUP BY {col_name | expr | position} [ASC | DESC],

... [WITH ROLLUP]]
▪ [HAVING where_condition]
▪ [ORDER BY {col_name | expr | position} [ASC | DESC],

...]
▪ [LIMIT {[offset,] row_count | row_count OFFSET

offset}]
]

220

 SELECT este cea mai importanta interogare
SQL.

 Intelegerea setarilor si utilizarea inteligenta a
indecsilor stau la baza eficientei unei aplicatii

 E absolut necesara realizarea interogarii in
asa fel incat datele returnate sa fie exact cele
dorite (prelucrarea sa se realizeze pe server-ul
MySql)

221

 select_expr: macar o expresie selectata
trebuie sa apara

▪ identifica ceea ce trebuie extras ca valori de iesire
din baza de date

▪ pot fi nume de coloana(e)

▪ pot fi date de sinteza (rezultate din utilizarea unor
functii MySql) – necesara atribuirea unui Alias

▪ SELECT CONCAT(last_name,', ',first_name) AS
full_name FROM mytable ORDER BY full_name;

222

 WHERE where_condition, HAVING
where_condition sunt utilizate pentru a
introduce criterii de selectie
▪ in general au comportare similara si sunt

interschimbabile

▪ WHERE accepta orice operatori mai putin functii
aggregate – de “sumare” (COUNT, MAX)

▪ HAVING acepta functii aggregate, dar se aplica la
sfarsit, exact inainte de a fi trimise datele clintului,
fara nici o optimizare – utilizarea este recomandata
doar cand nu exista echivalent WHERE

223

 ORDER BY {col_name | expr | position} [ASC |
DESC]

▪ ordoneaza datele returnate dupa anumite criterii
(valoarea unei anumite coloane sau functii).

▪ Implicit ordonarea este crescatoare ASC, dar se poate
specifica ordine descrescatoare DESC

 GROUP BY {col_name | expr | position}

▪ realizeaza gruparea liniilor returnate dupa anumite
criterii

▪ permite utilizarea functiilor aggregate (de sumare)

224

 GROUP BY – functii aggregate
▪ AVG(expresie) – mediere valorilor

▪ SELECT student_name, AVG(test_score) FROM student GROUP BY
student_name;

▪ COUNT(expresie), COUNT(*)
▪ SELECT COUNT(*) FROM student;
▪ SELECT COUNT(DISTINCT results) FROM student;
▪ SELECT student.student_name,COUNT(*) FROM student,course WHERE

student.student_id=course.student_id GROUP BY student_name;
▪ SELECT columnname, COUNT(columnname) FROM tablename GROUP BY

columnname HAVING COUNT(columnname)>1
 Cuvantul cheie DISTINCT este utilizat pentru a procesa doar liniile

cu valori diferite
▪ exemplu: 100 de note (rezultate) la examen

▪ COUNT(results) va oferi raspunsul 100
▪ COUNT(DISTINCT results) va oferi raspunsul 7 (notele diferite 4,5,6,7,8,9,10)

225

 GROUP BY – functii aggregate

▪ MIN(expresie), MAX(expresie) – minim si maxim

▪ SELECT student_name, MIN(test_score),
MAX(test_score) FROM student GROUP BY
student_name;

▪ SUM(expresie) – sumarea valorilor

▪ SELECT year, SUM(profit) FROM sales GROUP BY year;

 WITH ROLLUP – operatii de sumare super-
aggregate (un nivel suplimentar de agregare)

226

 SELECT year, SUM(profit) FROM sales GROUP BY
year;

 SELECT year, SUM(profit) FROM sales GROUP BY
year WITH ROLLUP;
▪ se obtine un total general, linia “super-aggregate” este

identificata dupa valoarea NULL a coloanei dupa care se
face sumarea

227

 LIMIT [offset,] row_count | row_count

▪ se limiteaza numarul de linii returnate

▪ utilizat frecvent in aplicatiile web

▪ LIMIT 15 – returneaza doar primele 15 linii (1÷15)

▪ LIMIT 10,15 – returneaza 15 linii dupa primele 10
linii (11÷25)

228

 Normalizarea si existenta relatiilor intre diversele
tabele ale unei baze de date implica faptul ca pentru
aflarea unor informatii utilizabile (complete), acestea
trebuie extrase simultan din mai multe tabele
▪ informatie inutilizabila: studentul cu id-ul 253 a luat nota 8

la examenul cu id-ul 35
 Uneori asamblarea informatiilor din mai multe tabele

e necesara pentru obtinerea unor rapoarte complexe
▪ Exemplu: tabel cu clienti, tabel cu comenzi, tabel cu

produse; legatura produse-comenzi e implementata
printr-un tabel suplimentar. Raspunsul la intrebarea cate
produse x a cumparat clientul y cere tratarea unitara a
celor 4 tabele implicate

229

 In general in SQL se poate descrie o astfel de unificare
de date intre doua tabele:
▪ left_table JOIN_type right_table criteriu_unificare

 JOIN_type
▪ JOIN – selecteaza toate liniile compuse in care criteriul

este indeplinit pentru ambele tabele
▪ LEFT JOIN – compune si selecteaza toate liniile din

left_table chiar daca nu este gasit un corespondent in
right_table

▪ RIGHT JOIN – compune si selecteaza toate liniile din right
table (similar)

▪ FULL JOIN – compune si selecteaza toate liniile din
left_table si right_table fie ca este indeplinit criteriul fie ca
nu (nu este implementat in MySql, poate fi simulat)

230

 Clauza JOIN e utilizata pentru a realiza o unificare
temporara, dupa anumite criterii, din punct de vedere
logic, a doua tabele in vederea extragerii informatiei
“suma” dorite
▪ left_table [INNER | CROSS] JOIN right_table

[join_condition]
▪ left_table STRAIGHT_JOIN right_table
▪ left_table STRAIGHT_JOIN right_table ON condition
▪ left_table LEFT [OUTER] JOIN right_table join_condition
▪ left_table NATURAL [LEFT [OUTER]] JOIN right_table
▪ left_table RIGHT [OUTER] JOIN right_table join_condition
▪ left_table NATURAL [RIGHT [OUTER]] JOIN right_table
▪ join_condition: ON conditional_expr | USING (column_list)

231

 Tabel clienti

▪ 4 clienti

 Tabel comenzi

▪ client 1 – 2
comenzi

▪ client 2 – 0
comenzi

▪ client 3,4 – 1
comanda

CREATE TABLE `clienti` (
 `id_client` int(10) unsigned NOT NULL auto_increment,
 `nume` varchar(100) NOT NULL,
 PRIMARY KEY (`id_client`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `clienti` (`id_client`,`nume`) VALUES
 (1,'Ionescu'),
 (2,'Popescu'),
 (3,'Vasilescu'),
 (4,'Georgescu');

CREATE TABLE `comenzi` (
 `id_comanda` int(10) unsigned NOT NULL auto_increment,
 `id_client` int(10) unsigned NOT NULL,
 `suma` double NOT NULL,
 PRIMARY KEY (`id_comanda`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `comenzi` (`id_comanda`,`id_client`,`suma`) VALUES
 (1,1,19.99),
 (2,1,35.15),
 (3,3,17.56),
 (4,4,12.34);

232

 INNER JOIN sunt unificarile implicite, in care criteriul
(join_condition) trebuie indeplinit in ambele tabele
(extensie a cuvantului cheie JOIN pentru evitarea
ambiguitatii)
▪ OUTER JOIN = {LEFT JOIN | RIGHT JOIN | FULL JOIN } – nu

e obligatoriu sa fie indeplinit criteriul in ambele tabele

▪ FULL JOIN nu e implementat in MySql, poate fi simulat ca
UNION intre LEFT JOIN si RIGHT JOIN

 INNER JOIN sunt echivalente cu realizarea produsului
cartezian intre cele doua tabele implicate urmata de
verificarea criteriului, daca acesta exista

233

 In MySql INNER JOIN si CROSS JOIN sunt
echivalente in totalitate
▪ In SQL standard INNER este folosit in prezenta unui

criteriu, CROSS in absenta sa
 INNER (CROSS) JOIN si “,” sunt echivalente cu

produsul cartezian intre cele doua tabele
implicate in conditile lipsei criteriului de selectie:
fiecare linie a unui tabel este alaturata fiecarei
linii din al doilea tabel
▪ (un tabel cu M linii si A coloane) CROSS JOIN (un tabel

cu N linii si B coloane) → (un tabel cu MxN linii si A+B
coloane)

234

235

 USING – trebuie sa aiba o coloana cu nume identic in cele doua
tabele
▪ coloana comuna este afisata o singura data

 ON – accepta orice conditie conditionala
▪ chiar daca numele coloanelor din conditie sunt identice, sunt tratate

ca entitati diferite (id_client apare de doua ori provenind din cele doua
tabele)

236

 NATURAL JOIN e echivalent cu o unificare
INNER JOIN cu o clauza USING(…) care
utilizeaza toate coloanele cu nume comun
intre cele doua tabele

237

 Unificare de tip OUTER JOIN
 Se returneaza linia din left_table chiar daca

nu exista corespondent in right_table (se
introduc valori NULL)

 Cuvantul cheie OUTER este optional

238

 Unificare de tip OUTER JOIN
 Se returneaza linia din right_table chiar daca nu exista

corespondent in left_table
 Echivalent cu LEFT JOIN cu tabelele scrise in ordine

inversa

239

 STRAIGHT_JOIN – forteaza citirea mai intai a
valorilor din left_table si apoi a celor din
right_table (in anumite cazuri citirea se
realizeaza invers)

 USE_INDEX, IGNORE_INDEX,
FORCE_INDEX controlul index-ului utilizat
pentru gasirea si selectia liniilor, poate aduce
spor de viteza

240

 Combina rezultatele mai multor interogari
SELECT intr-un singur rezultat general

 SELECT … UNION [ALL | DISTINCT]
SELECT … [UNION [ALL | DISTINCT]
SELECT ...]

 Poate fi folosit pentru a realiza FULL JOIN

241

 O “subinterogare” este o interogare de tip
SELECT utilizata ca operand intr-o alta
interogare

 O “subinterogare” poate fi privit ca un tabel
temporar si tratat ca atare (inclusiv cu JOIN)
eventual cu atribuire de nume (Alias) daca
este nevoie

 Exemple
▪ SELECT * FROM t1 WHERE column1 = (SELECT

column1 FROM t2);

242

 Subquery – un instrument foarte puternic
 permite selectii in doua sau mai multe etape
▪ o prima selectie dupa un criteriu

▪ urmata de o doua selectie dupa un alt criteriu in
rezultatele primei selectii

▪ ... samd
 Exista restrictii asupra tabelelor implicate pentru

evitarea prelucrarilor recursive (bucle potential
infinite)
▪ ex: UPDATE tabel1 SET ... SELECT ... FROM tabel1 nu

este permis

243

 Subquery – un instrument foarte puternic
 Permite evitarea multor prelucrari PHP si

trimiterea lor spre server-ul MySql

▪ INSERT INTO tabel1 ... SELECT ... FROM tabel2
permite inserarea printr-o singura interogare a
mai multor linii in tabel1 (in functie de numarul de
linii rezultate din tabel2)

244

 Laboratorul de microunde si optoelectronica
 https://rf-opto.etti.tuiasi.ro
 rdamian@etti.tuiasi.ro

245

	Slide 1: Databases, Web Programming and Interfacing
	Slide 2: DWPI
	Slide 3: Grade
	Slide 4: Info
	Slide 5: Online – Registration no.
	Slide 6: Online
	Slide 7: Online
	Slide 8: Password
	Slide 9: Manual examen online
	Slide 10: Examen online
	Slide 11: Project
	Slide 12: Project
	Slide 13: Project grading
	Slide 14: Online exam 19.12 – xx.06
	Slide 15: Online exam 19.12 – xx.06
	Slide 16: PHP
	Slide 17: Arrays
	Slide 18: Arrays in PHP
	Slide 19: Array = Logical tree
	Slide 20: Array = Logical tree
	Slide 21: Arrays in PHP
	Slide 22: View array content (debug)
	Slide 23: Foreach loop
	Slide 24: Example – foreach
	Slide 25: PHP Global Variables - Superglobals
	Slide 26: PHP Global Variables - Superglobals
	Slide 27: Getting user submitted data
	Slide 28: Organizing $_POST
	Slide 29: Organizing $_POST
	Slide 30: Organizing $_POST
	Slide 31: Accessing a MySQL server from PHP
	Slide 32: Accessing a MySQL server from PHP
	Slide 33: Accessing a MySQL server from PHP
	Slide 34: Accessing a MySQL server from PHP
	Slide 35: Accessing a MySQL server from PHP
	Slide 36: MySQL resources
	Slide 37: MySQL resources
	Slide 38: MySQL resources
	Slide 39: MySQL resources
	Slide 40: Example
	Slide 41: Accessing a MySQL server from PHP
	Slide 42: PHP > 5.5
	Slide 43: PHP 5.5, 7, 8
	Slide 44: mysqli extension
	Slide 45: mysqli extension
	Slide 46: mysqli – Procedural
	Slide 47: mysqli – OOP
	Slide 48: MySQL resources – mysqli
	Slide 49: Conversion to mysqli (mandatory)
	Slide 50: mysqli (Procedural)
	Slide 51: mysqli (OOP)
	Slide 52: Textbooks
	Slide 53: Template
	Slide 54: Template
	Slide 55: Example
	Slide 56: Control statements
	Slide 57: Example 2
	Slide 58: Example 3
	Slide 59: Using a template
	Slide 60: Template
	Slide 61: Advantages working with template
	Slide 62: Active Links
	Slide 63: Methods
	Slide 64: Active Links
	Slide 65: Active Links
	Slide 66: Application flowchart
	Slide 67: Rudimentary online shop app
	Slide 68: Application flowchart – Buyer
	Slide 69: Application flowchart – Seller
	Slide 70: Seller thread for online shop app
	Slide 71: Application flowchart
	Slide 72: Application flowchart
	Slide 73: Application flowchart
	Slide 74: Flowchart (Buyer)
	Slide 75: Flowchart (Seller)
	Slide 76: Complete application flowchart
	Slide 77: Optimal application flowchart
	Slide 78: Individual assignment
	Slide 79: Single file for data collection AND processing
	Slide 80: Complete application flowchart
	Slide 81: Flowchart (Seller)
	Slide 82: Single file for data collection AND processing
	Slide 83: Single file for data collection AND processing
	Slide 84: Single file for data collection AND processing
	Slide 85: PHP Debug
	Slide 86: View array content (debug)
	Slide 87: Verify/debug PHP code
	Slide 88: Debug
	Slide 89: Recommended practical aspects in creating web applications
	Slide 90: Recommended methods 1
	Slide 91: Recommended methods 2
	Slide 92: Recommended methods 3
	Slide 93: Recommended methods 3
	Slide 94: Recommended methods 4
	Slide 95: Recommended methods 5
	Slide 96: Recommended methods 5
	Slide 97: Recommended methods 5
	Slide 98: Tehnici PHP avansate
	Slide 99: HTTP headers
	Slide 100: HTTP headers
	Slide 101: HTTP headers
	Slide 102: Buffer iesire
	Slide 103: Buffer iesire
	Slide 104: Buffer iesire
	Slide 105: Cookies
	Slide 106: Cookies
	Slide 107: Cookies
	Slide 108: Cookies
	Slide 109: Cookies
	Slide 110: Cookies
	Slide 111: Sesiune
	Slide 112: Sesiune
	Slide 113: Sesiune
	Slide 114: Sesiune
	Slide 115: Sesiune
	Slide 116: Sesiune
	Slide 117: Sesiune
	Slide 118: Reference server and applications
	Slide 119: Using LAMP
	Slide 120: Using LAMP
	Slide 121: Using LAMP – Advantages
	Slide 122: Reference Server
	Slide 123: Reference Server
	Slide 124: Server referinta
	Slide 125: Server referinta
	Slide 126: Reference Server
	Slide 127: Possible problems
	Slide 128: Using LAMP
	Slide 129: LAMP Reference Server 2023
	Slide 130: LAMP Reference Server 2025
	Slide 131: LAMP Reference Server
	Slide 132: LAMP Reference Server
	Slide 133: LAMP Reference Server
	Slide 134: Server referinta
	Slide 135: LAMP Reference Server
	Slide 136: Support applications
	Slide 137: Aplicatii suport
	Slide 138: IP address
	Slide 139: Putty
	Slide 140: WinSCP
	Slide 141: Visual Studio Code
	Slide 142: Visual Studio Code
	Slide 143: Visual Studio Code
	Slide 144: Visual Studio Code
	Slide 145: Browser
	Slide 146: Server MySQL/MariaDB
	Slide 147: SQL
	Slide 148: MySql
	Slide 149: DBMS, RDBMS
	Slide 150: Relatii
	Slide 151: Relatii, chei
	Slide 152: Chei
	Slide 153: Normalizare
	Slide 154: Eliminarea datelor redundante
	Slide 155: Eliminarea datelor redundante
	Slide 156: Prima forma normala
	Slide 157: A doua forma normala
	Slide 158: A doua forma normala
	Slide 159: A treia forma normala
	Slide 160: A treia forma normala
	Slide 161: Normalizare suplimentara
	Slide 162: Normalizare suplimentara
	Slide 163: Relatii in Bazele de date
	Slide 164: Relatii in Bazele de date
	Slide 165: One to One
	Slide 166: One to One
	Slide 167: One to Many
	Slide 168: One to Many, Many to One
	Slide 169: Many to Many
	Slide 170: Many to Many
	Slide 171: Self Referencing (unare)
	Slide 172: Relatii in Bazele de date
	Slide 173: Relatii in Bazele de date
	Slide 174: Relatii in Bazele de date
	Slide 175: Relatii in Bazele de date
	Slide 176: Relatii in Bazele de date
	Slide 177: Relatii
	Slide 178: MySql – eficienta
	Slide 179: Tipuri de date
	Slide 180: MySql – tipuri de date
	Slide 181: MySql – tipuri de date
	Slide 182: MySql – tipuri de date
	Slide 183: MySql – tipuri de date
	Slide 184: Metode de stocare
	Slide 185: Metode de stocare
	Slide 186: Metode de stocare
	Slide 187: Metode de stocare
	Slide 188: Metode de stocare
	Slide 189: Metode de stocare
	Slide 190: Limbaj SQL
	Slide 191: Referinta relativa
	Slide 192: Referinta absoluta
	Slide 193: Nume de identificatori permise
	Slide 194: Nume de identificatori permise
	Slide 195: Alias
	Slide 196: Alias
	Slide 197: Alias
	Slide 198: Alias
	Slide 199: Interogari SQL
	Slide 200: Interogari
	Slide 201: ALTER DATABASE
	Slide 202: ALTER TABLE
	Slide 203: CREATE DATABASE
	Slide 204: CREATE INDEX
	Slide 205: CREATE TABLE
	Slide 206: CREATE TABLE
	Slide 207: CREATE TABLE
	Slide 208: CREATE TABLE
	Slide 209: DROP
	Slide 210: Interogari SQL
	Slide 211: Interogari
	Slide 212: DELETE
	Slide 213: DELETE
	Slide 214: INSERT
	Slide 215: INSERT
	Slide 216: INSERT
	Slide 217: INSERT
	Slide 218: REPLACE
	Slide 219: UPDATE
	Slide 220: SELECT
	Slide 221: SELECT
	Slide 222: SELECT
	Slide 223: SELECT
	Slide 224: SELECT
	Slide 225: SELECT
	Slide 226: SELECT
	Slide 227: SELECT … WITH ROLLUP
	Slide 228: SELECT
	Slide 229: JOIN
	Slide 230: JOIN
	Slide 231: JOIN
	Slide 232: JOIN – Exemplu
	Slide 233: INNER JOIN
	Slide 234: CROSS JOIN
	Slide 235: CROSS JOIN
	Slide 236: INNER JOIN – criterii
	Slide 237: NATURAL JOIN
	Slide 238: LEFT JOIN
	Slide 239: RIGHT JOIN
	Slide 240: JOIN
	Slide 241: UNION
	Slide 242: Subquery
	Slide 243: Subquery
	Slide 244: Subquery
	Slide 245: Contact

